Google Memorystore for Redis
Google Memorystore for Redis is a fully-managed service that is powered by the Redis in-memory data store to build application caches that provide sub-millisecond data access. Extend your database application to build AI-powered experiences leveraging Memorystore for Redis's Langchain integrations.
This notebook goes over how to use Memorystore for Redis to store vector embeddings with the MemorystoreVectorStore
class.
Learn more about the package on GitHub.
Pre-reqs
Before You Begin
To run this notebook, you will need to do the following:
- Create a Google Cloud Project
- Enable the Memorystore for Redis API
- Create a Memorystore for Redis instance. Ensure that the version is greater than or equal to 7.2.
🦜🔗 Library Installation
The integration lives in its own langchain-google-memorystore-redis
package, so we need to install it.
%pip install -upgrade --quiet langchain-google-memorystore-redis langchain
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)